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Abstract 

  This paper presents the method of fundamental solution for water wave-structure 

interaction analysis with multiple cylinders. The method of fundamental solution (MFS) is strong-

form of boundary meshless collocation method. Its numerical solution is approximated by a 

linear combination of fundamental solutions in terms of sources, which are placed on the 

fictitious boundary outside the domain of the problem to avoid the singularities of fundamental 

solutions at origin. In this study, two types of ocean engineering structures, circular and elliptical 

cylinders are considered. Numerical results show the efficiency and accuracy of the method in 

comparison with the singular boundary method (SBM). The near trapped mode phenomenon of 

four and sixteen hard cylinder structures are revisited.   

Keywords: Method of fundamental solutions, strong form, meshless boundary method, 

collocation method, water wave-structure interaction  

1. Introduction 

Water wave-structure interaction is one of important topic and has been attracted the 

intention of engineers in ocean engineering communities [1-4]. It is a phenomenon which occurs 

in a system where a water wave causes the structure to deform, in turn, changes the boundary 

condition of water fluid system. The interactions of multiple-cylinder-array structure may result in 

hydrodynamic loads and wave run up on the individual-cylinder structure that differ significantly 

from the loads and run up they would experience in isolation [5-12].  And it can cause significant 

damage to offshore structures. Therefore, numerical simulation of these two water wave-

structure interaction problems is essential to provide some reference on effective design for safe 

and economic offshore structures. Accurate computation of this phenomenon has impact on 

offshore production and the economics of countries.  



Several numerical methods have been proposed to solve the water wave-structure 

interaction problems [6-8]. However their numerical method require the construction of a tedious 

and difficult mesh and are computationally costly and mathematically troublesome. To 

overcome these difficulties, investigators proposed new numerical methods, which called 

boundary meshless collocation methods [9-15].  

In this paper, we propose the method of fundamental solution (MFS), which is a well-known 

strong-form boundary meshless collocation method. The method requires fictitious boundary to 

eliminate the numerical integral of the singular fundamental solutions in the boundary element 

method (BEM) [16-18]. The MFS is available for different type of problems including elliptic, time-

dependent parabolic, free boundary, and coefficient and boundary inverse problems [19-21]. The 

method is practicable and easy to implement in complex geometry problems. The method has 

also advantages of high convergence rate.  

In this study, two types of ocean engineering structure, circular and elliptical cylinders, are 

considered. The governing equation and the method of fundamental solution (MFS) for water 

wave-structure are introduced in the second section. The third section presents the accuracy, 

efficiency of the MFS in comparison with the analytical solution and the near-trapped mode 

phenomena for multiple cylinders. The fourth section concludes this article with some remarks.   

2. Water wave-structure interaction analysis 

2.1. Governing equation  

Assuming that the ocean water is incompressible, non-viscous and irrotational fluid. The 

governing equation of water wave-structure interaction is given by  

   2
1 2 3 1 2 3, , , 0, , , ,x x x t x x x t                                     (1) 

where ,   and   are the Laplace operator, the domain of interest and the velocity potential, 

respectively. The boundary conditions are 
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- Dynamic free-surface boundary condition: 
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Fig.1. Spatial representation of surface elevation  1 2, ,x x t  

By using the method of separation of variables, we set  
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where      3 3cosh coshf x igA kH k x H     , and wavenumber k  is the real root of the 

dispersion relationship 2 tanh( )gk kH  , in which ,g  ,A    and H  are the acceleration due 

to the gravity, the amplitude of incident wave, the angular frequency and the water depth, 

respectively.  

Substituting Eq. (5) into Eq. (1) - (4) and by removing the depth dependence, 3D water wave 

problems as shown in Fig.1 can be reduced to 2D water wave problem shown in Fig.2 
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where ,u ,D ,N jr and n  are the potential field, unbounded region in 2 , the Euclidean distance 

and the unit outward normal vector, respectively. And 1i   , ,u q  are known functions, Eq. 

(9) is the famous Sommerfeld radiation condition at infinity. 

 

Fig. 2. Sketch of 2D water wave problems 

 



2.2. The method of fundamental solution (MFS)  

The approximate solution in the MFS is given by  
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where ,j  , D and N represent the thj  unknown coefficients to be determined, the 

unbounded domain, the essential boundary (Dirichlet) and natural boundary (Neumann) 

conditions, respectively. The function  ,m jG x s is a fundamental solution given by 

      1
0, ,

4m j mj m j

i
G x s H kr x s  for exterior problems in 2D. In which 1i   , Euclidean 

distance 
2mj m jr x s   and  1

0 ,H ,mx js  denote the Hankel function of the first kind of order 

zero, the thm  collocation points on the physical boundary and the thj source points which lie 

outside  , respectively. 

 

Fig. 3. Sketch and node distribution of the MFS for exterior problems 

  

 

 

 

 

 

 

 



- The mathematical model for multiple cylinder problems: 
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Where ,i su u u  in which ,i su u are the incident wave and scattered wave, respectively.  

- The fundamental solutions (MFS) for multiple cylinders is represented as 

                              

        
 

     
   

  

 

2 1
1

2 1
1

1 2
2

, , \

,
, \ , 12

lim 0,

p

p

j

N p pp
jm i m m j m D

j

p
N p m ji mp

jm m N
j

j j i m
r

u x u x G x s x

G x su x
q x x

n n

r r ik u u x












   




       


      





               

where p represent the number of cylinder (  
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imposing the boundary condition, and the outward normal unit on the collocation points mx and 

the number of source points ,js respectively.  

For the multiple cylinders the unknown coefficients and the source points are represented as 
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3. Numerical results 

The efficiency, accuracy, and convergence of the MFS are tested by calculating the root 

mean square error (RMSE), the relative and error (Rerr), which are respectively defined as 
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where u  and u are the numerical and the exact solutions of the total potential field. NT  is the 

number of tested points in the domain, which are uniform angular distributed on the boundary. 

3.1 Example 1: Water wave-structure interaction with one circular cylinder 

We consider a plan wave  1 2cos sininc incik x x
iu e    scattered by rigid vertical cylinder (Neumann 

type). The total field of scattering is i su u u  which satisfies the Helmholtz equation in 2D (Eq. 

6). The boundary condition on rigid cylinder is given by  
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And the analytical solution of scattering field is given by [22] 
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where  1 ,tH  1 ,tJ  , ,r  k and p represent the tht  order Hankel function of the first kind, the 

tht order Bessel function of the first kind, polar coordinates of the domain point, the wavenumber 

and the radii of the circular domain, respectively.  

Fig. 4 represents errors analysis of the MFS for various numbers of nodes in example 1 from 

a rigid cylinder. We fixed the fictitious radius, the wavenumber k=1, incident wave 0inc   and 

the fictitious radius r= 0.7. From this figure, we can observe that the numbers of N=100 provide 

better results. 

Fig. 5 shows the analytical and numerical solutions from rigid cylinder with wavenumber 

k=1, fictitious radius 0. 7 incident angle 0inc  . MFS and analytical solutions are in good 

agreement. The method rapidly converges.  



 

Fig. 4 Errors analysis of the MFS for various numbers of nodes with fictitious radius r=0.7, 

with wavenumber k=1, incident wave 0inc   

 

Fig. 5. Numerical and analytical solutions of rigid cylinder with k=1: (a) Analytical solution, 

(b) MFS solution with fictitious radius 0. 7 and incident angle 0inc  . 

3.2 Example 2: Water wave-structure interaction with multiple cylinders 

a) - Water wave-structure interaction analysis with four circular and elliptical cylinders 

We consider four rigid cylinders subjected to a plan wave  1 2cos sininc incik x x
iu e   with incident 

angle 0 .oinc   The radius of each circular cylinders is a=0.4 separation central distance of two 

cylinders 0.5b   as shown in Fig. 6(a). The semi-major axis and semi-minor axis of elliptical 

cylinders are aj = 0.4 and bj=0.2 (j=1, 2, 3, 4), respectively (Fig. 6(ii)). The separation distance 

between each elliptical cylinder to the origin of the system is OjO =0.6 (j=1, 2, 3, 4). 

 

Fig. 6. Sketch of 2D water wave interactions by an array of four rigid cylinders for near-

trapped mode analysis: (a) circular cylinder and (b) elliptical cylinder 



Fig. 7 plots the variation of free-surface elevation in the vicinity of four rigid cylinders from 

the SBM (Fig.7a) and MFS (Fig.7b) with incident angles 0o
inc  and at wavenumber 

ka=4.08482 for circular cylinders (Fig.7i) and at  wavenumber ka=3.1497 for elliptical cylinders 

(Fig.7ii). 

The near-trapped mode phenomenon is revisited [4, 10], the maximum amplitude is 160 times 

of amplitude of incident wave for circular cylinders (Fig.7i) and 120 for elliptical cylinders 

(Fig.7ii). The SBM and MFS are in good agreement.  

 

Fig. 7. The variation of free-surface elevation in the vicinity of four rigid cylinders with 

incident angle 0o
inc   from (i) circular cylinders at wave number ka=4.08482 and (ii) 

elliptical cylinders at ka=3.1497: (a) SBM solution and (b) MFS solution 

b) - Water wave-structure interaction analysis with sixteen circular and elliptical cylinders 

We consider a plane  1 2cos sininc incik x x
iu e   scattered by an array of sixteen hard cylinders. In 

the simulation, we set a=0.4, b=0.5, ka=4.08482, H=2 and 0inc   for circular cylinders and 

a=0.4, b=0.2, ka=3.1497, H=2, d=0.6 and 0inc  for elliptical cylinders.  



Fig. 8a displays the free-surface elevation in the vicinity of sixteen rigid circular cylinders 

with wavenumber ka=4.08482, incident angle 0inc  and number of node N= 100 of each 

cylinder. The near-trapped mode phenomenon [4, 10] is revisited, the maximum amplitude of 

runup is 120 times. We can observe from this figure that the distribution of the wave amplitude 

inner sides of the cylinders is not the same. The coming wave impinging the array cylinders 

oscillates and has its maximum (crest) and minimum (through).  Here, the wave elevation is 

maximum inner sides of the four cylinders at the top and bottom and it is minimum inner sides of 

array of cylinders at the middle. 

Fig. 8b shows the free-surface elevation in the vicinity of sixteen rigid elliptical cylinders with 

wavenumber ka=3.1497, incident angle 0inc  and number of node N= 300. The maximum 

value appears on the inner sides of the cylinders is over 70 times of incident wave amplitude. 

Here, the wave elevation is minimum inner sides of the third, eighth, ninth and fourteenth 

cylinders and it is maximum inner sides of others cylinders. 

 

Fig. 9. The free-surface elevation in the vicinity of sixteen hard cylinders with incident angle 

0inc  and number of node N= 100 of each cylinder: (a) circular cylinders, wavenumber 

ka=4.08482, (b) elliptical cylinders, wavenumber ka=3.1497 

 

 

 



c) – Numerical Investigation 

In this section, we study the near-trapped mode in the case of irregular arrangement of ten 

and sixteen cylinders with incident angle 0inc  . The displacement of each cylinder center 

apart from its original periodical position is defined as follows 
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                                      (18) 

where ,j    and a represent a random variable in the range of [0, 1], a global disorder 

parameter and the radii of cylinders, respectively. Here we set 1j   and 1  . Fig. 10 shows 

the disorder displacement in the irregular arrangement for sixteen cylinders. This figure is 

applicable to an array of the circular and elliptic cylinders. 

 

Fig. 10. Disorder displacement in the irregular arrangement for sixteen cylinders 

Fig. 11a plots free-surface elevation in the vicinity of sixteen hard circular cylinders with 

wavenumber ka=4.08482, incident angle.  The results show that the disorder treatment can 

weaken the free-surface elevation on inner sides of the cylinders. The maximum amplitude is 5 

times of incident wave. 

Fig. 11b represents the free-surface elevation in the vicinity of sixteen hard elliptical 

cylinders for with wavenumber ka=3.1497 incident angle 0inc  . For this case, the maximum 

amplitude is 4.5 times of incident wave.   

 



4. Conclusions 

We have applied the MFS to the problem of water wave-structure interactions with multiple 

cylinders. Two types of cylinders, circular and elliptical cylinder structures, are considered. The 

present method is accurate, efficient and stable. The near-trapped mode phenomena was 

examined. The maximum amplitude on inner sides of elliptical cylinders is much lower than the 

one on inner sides of circular cylinders. It is found that the disorder treatment can suppress the 

occurrence of the near-trapped phenomena. After comparing with the results obtained in the 

literature, good agreements were observed.  

 

 

Fig. 11. The free-surface elevation in the vicinity of sixteen hard cylinders with incident 

angle 0inc  and number of node N= 100: (a) Circular cylinders, ka=4.08482, (b) elliptical 

cylinders, ka=3.1497 
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