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Résumé
On sait que tout anneau commutatif fini se décompose de façon unique en une somme
directe d’anneaux locaux. Dans ce papier, une nouvelle approche pour prouver ce résultat
important est présentée.

Mots-clés. Anneau commutatif fini, anneau local, idéal, élément nilpotent, idempotent.

abstract
It is known that every finite commutative ring decomposes uniquely as a direct sum of
local rings. In this paper, a new approach to prove this important result is presented.

Keywords. Finite commutative ring, local ring, ideal, nilpotent element, idempotent.

1 Introduction
The structure theorem of finite commutative rings states that any finite commutative ring
may be expressed uniquely as a direct sum of finite local comutative rings. Therefore, the
theory of finite commutative rings is reduced to a characterization of local commutative
rings. Local rings have an important geometric aspect (cf M. Nagata [7]).
The structure theorem of finite commutative rings may be considered as a special case of
the Krull-Remak-Schmidt decomposition theorem (cf S. Lang [5]).
Finite commutative ring theory has important applications in various areas like algebraïc
cryptography, analysis of algorithms and coding theory.
Many authors studied the structure theorem of finite commutative rings, for instance cf
B.R. McDonald [6] and G. Bini, F. Flamini [1].
We give here a new proof of this famous theorem. In fact, we provide an internal decom-
position of a finite commutative ring.
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This paper is organized as follows. In section 2, we recall a property of finite domains.
The section 3 is devoted to develop the new approach for the study of the structure of
finite commutative rings. In section 4, an example is given.

2 Preliminaries

All rings will be commutative with identity 1 6= 0. Ideals do not contain 1. The divisors
of 1 are called units. A ring D without zero-divisors is called a domain. This means that
for any a ∈ D? := D\{0}, the endomorphism

φ : D −→ D

x 7−→ a · x

is injective.
If D is finite, these maps are also surjective, so D is a field.

3 The decomposition

From now on, we consider a finite ring R and its prime ideals P1, . . . ,Pt. The residue class
rings R/Pτ are finite domains, so they are fields and it follows that the Pτ are maximal
ideals.
Put

Aτ :=
⋂
σ 6=τ

Pσ.

3.1 Proposition. The ideal sum Pτ + Aτ equals R.

Proof. We have Pi+Pj = R for i 6= j. Let τ ∈ {1, . . . , t}. We have Aτ =
⋂
σ 6=τ

Pσ =
∏
σ 6=τ

Pσ.

And
∏
σ 6=τ

(Pτ + Pσ) = Pτ · I + Aτ = R where I is an ideal of R. Since Pτ · I ⊆ Pτ , then

the proposition is proved.

Therefore, the intersection Pτ ∩Aτ is equal to the ideal product Pτ ·Aτ . We have also the
following property.

3.2 Corollary. Pnτ + A
n
τ = R for n = 1, 2, . . ..

Proof. We have Pτ + Aτ = R. Thus 1 = a1 + a2 with a1 ∈ Pτ and a2 ∈ Aτ . Then
1 = (a1 + a2) · (a1 + a2) = a21 + 2a1a2 + a22 = a21 + 2a1a2(a1 + a2) + a22 = (a21 + 2a21a2) +
(2a1a

2
2 + a22) ∈ P2

τ + A
2
τ . Thus, P

2
τ + A

2
τ = R. The result is obtained by continuing in this

way.

Define the radical R := Rad(R) of the ring R by

R := P1 ∩ . . . ∩ Pt.

Therefore,
R := P1 · . . . · Pt.
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If x is in R, so are its powers xi (i ∈ N), but these are not all different, since R is finite.
So there is a first j ∈ N with xj = xj+k for some k > 0. We get xj(1 − xk) = 0. Since
xk ∈ R, the element 1 − xk cannot be in any Pτ . So 1 − xk is a unit in R. And we get
xj = 0. Clearly, j is the smallest integer with xj = 0. We call j the depth of x. So all
elements of R are nilpotent. Since R is finite, some ideal product R · . . . ·R = Rm is zero.
The depth of R is the smallest such m ≥ 0. So we have

Pm1 · . . . · Pmt = {0} (1)

for m = Depth(R).
Put

Qτ := P
m
τ .

Then, (1) may be interpreted as the Noether-Lasker decomposition of {0} in the ring R
(cf O.Zariski, P. Samuel [8]), i.e.

{0} = Q1 ∩ . . . ∩Qt.

3.3 Proposition. We have Pmτ = {x ∈ R | x · Amτ = {0}}.

Proof. Since Pmτ ·A
m
τ = {0}, then Pmτ ⊆ {x ∈ R | x·Amτ = {0}}. Conversely, let x ∈ R such

that x · Amτ = {0}. We have 1 = a+ b ∈ Pmτ + Amτ , and then x = xa+ xb = xa ∈ Pmτ .

3.4 Proposition. We have
R = A1 + . . .+ At.

Proof. The ideal sum is not contained in any maximal ideal of R.

And we also have

3.5 Proposition.
R = Am1 + . . .+ Amt . (2)

Proof. The sum Am1 + . . .+ Amt is not contained in any maximal ideal of R.

3.6 Corollary. We have
1 = e1 + . . .+ et (3)

with eτ ∈ Amτ for all τ ,
eσ · eτ = 0 for σ 6= τ (4)

and
eτ = eτ · eτ for all τ. (5)

Proof. (3) comes from (2).
We have Amσ · A

m
τ ⊆ Pm1 · . . . · Pmt = {0} for σ 6= τ . So we have (4).

By (3), eτ = 1 · eτ = eτ · eτ . Thus, we have (5).

The set {e1, . . . , et} in the above Corollary is called an orthogonal set of idempotents (cf
C.W. Curtis and I. Reiner [3]).

3.7 Proposition. The kernel of the homomorphism

ψ : R −→ R · eτ
x 7−→ x · eτ

is Pmτ .
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Proof. Let x ∈ Pmτ . We have x · eτ ∈ Pmτ · A
m
τ = {0}. Then x ∈ ker(ψ).

Conversely, let x ∈ R such that ψ(x) = 0, i.e. x · eτ = 0. Let a ∈ Amτ . By (3), we have
a = eτ · a. Then x · a = (x · eτ ) · a = 0. Thus x ∈ Pmτ from Proposition 3.3.

But R/Pmτ have the only maximal ideal Pτ/Pmτ , then the ring R/Pmτ is local. Furthermore,
we have

R/Pmτ
∼= R · eτ . (6)

3.8 Theorem. We have the unique direct sum decomposition of the finite commutative
ring R:

R = L1 ⊕ . . .⊕ Lt (7)

where Lτ := R · eτ is local and eτ is defined by (3) for all τ ∈ {1, . . . , t}.

Proof. By (6), the Lτ are local. From (3), we have R = L1+ . . .+Lt. This is a direct sum
because if a1 + . . .+ at = 0 with ai ∈ R · ei for all i, then 0 = e1(a1 + . . .+ at) = e1 · a1 =
e1(x1 · e1) = x1 · e21 = x1 · e1 = a1 where x1 ∈ R. In the same manner, we have ai = 0 for
all i. The unicity of the decomposition is straightforward.

4 Example
Consider R = Z/Zn with n = pi11 · . . . · pitt . In this case, we have m = max(i1, . . . , it),
R = Zp1 · . . . · pt/Zn, and Lτ ∼= Z/piττ . Then we have the decomposition

Z/pi11 · . . . · pitt ∼= Z/pi11 × . . .× Z/pitt .
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