Journal de Mathématiques
Mathématiques et Applications
Fondamentales \& Informatique
JMMAFI, ISSN 2411-7188, Vol.6, 2023, pp.21-25

On Finslerian connections

Manelo Anona
Department of Mathematics and Computer Science Faculty of Science, University of Antananarivo Antananarivo 101, PB: 906, MADAGASCAR e-mail address: mfanona@yahoo.fr

Abstract

Given a connection without torsion, we propose a method to know if the connection is Finslerian, in the case of a linear connection if it is Riemannian.

Keywords: Differentiable manifold, Nijenhuis tensor, Riemannian manifold, Spray.
Mathematical Subject Classification (2020): Primary 53XX; Secondary 17B66, 53B05, 53C08.

This article belongs to a special issue on JMMAFI, proceeding of Conférence de Mathématiques en l'honneur de Pr. Emérite Anona M. F. à l'occasion de son 76 ème anniversaire on 15-16-17 March 2023, Université d'Antananarivo, Madagascar, edited by Princy Randriambololondrantomalala.

1 Introduction

Let M be a paracompact differentiable manifold of dimension $n \geq 2$ and of class \mathcal{C}^{∞}. The considered connection is an almost product structure [4] which is a version of that of [6] using the formalism of [3].
Let J be the natural tangent structure of tangent bundle $T M, S$ a spray of class \mathcal{C}^{∞} on $T M-\{0\}, \mathcal{C}^{1}$ on null section, homogeneous of degree $1([C, S]=S), C$ is the Liouville field on the tangent bundle $T M$. The almost product structure $\Gamma=[J, S]$ is a connection without torsion. If S is of class \mathcal{C}^{2} on the null section, then the connection Γ is a linear connection without torsion. The curvature of Γ is the Nijenhuis tensor of $h, R=\frac{1}{2}[h, h]$, with $h=\frac{I+\Gamma}{2}, I$ being the identity vector 1 -form.

2 Finslerian manifold

A map E from $T M-\{0\}$ in \mathbb{R}^{+}with $E(0)=0$, of class \mathcal{C}^{∞} on $\mathcal{T} M$, of class \mathcal{C}^{1} on the null section and homogeneous of degree 2 such that $d d_{J} E$, where d is the exterior derivation,
has a maximal rank, defines a Finslerian structure. The map E is called an energy function. If E is of class \mathcal{C}^{2} on null section, the manifold is Riemannian. The almost product structure, called the canonical connection [4] is given by

$$
\Gamma=[J, S],
$$

where S is a spray defined by [5]

$$
i_{S} d d_{J} E=-d E,
$$

i_{S} being the inner product with respect to S. This connection is without torsion and conservative [4].
The fundamental form $\Omega=d d_{J} E$ allows to define, a metric g on the vertical bundle by

$$
g(J X, J Y)=\Omega(J X, Y),
$$

for all $X, Y \in \chi(T M)$, where $\chi(T M)$ denotes the set of all vector fields on $T M$.
There is [4], one and only one metric lift D of a canonical connection such that:

1. $J \mathbb{T}(h X, h Y)=0$,
2. $\mathbb{T}(J X, J Y)=0\left(\mathbb{T}(X, Y)=D_{X} Y-D_{Y} X-[X, Y]\right)$,
3. $D J=0$,
4. $D C=v$,
5. $D \Gamma=0$,
6. $D g=0$.

The linear connection D is called Cartan connection.
Proposition 2.1 ([1]). Let E be an energy function, Γ a connection such that $\Gamma=[J, S]$. The following two relationships are equivalent: $i)-i_{S} d d_{J} E=d E$, ii) $d_{h} E=0$.

Remark 2.2 ([4]). This property expresses the fact that the energy function is conserved by parallel transport and the paths of the spray are the solutions of the "Lagrange equations" of energy E.

Proposition 2.3. For the connection Γ satisfying the proposition 2.1 the scalar $1-$ form $d_{v} E$ is completely integrable.

Proof. The Kernel of $d_{v} E$ is formed by vector fields belonging to the horizontal space Imh $(v \circ h=0)$ and vertical vector fields $J Y$ such that $L_{J Y} E=0, Y \in I m h$, taking into account $v J=J, L_{J Y}$ being the Lie derivative with respect to a vector field $J Y$.
As we have

$$
[h X, h Y]=h[h X, h Y]+v[h X, h Y]=h[h X, h Y]+R(X, Y),
$$

for all $X, Y \in \chi(T M)$, and that $d_{h} E=0$ implies $d_{R} E=0$. We obtain

$$
[h X, h Y] \in \operatorname{Kerd}_{v} E .
$$

It remains to show that $L_{v[h X, J Y]} E=0, \forall X \in \operatorname{Imh}, Y \in \operatorname{Imh}$ satisfying $L_{J Y} E=0$. This is immediate since we have $v=I-h$.

Theorem 2.4. Let $\Gamma=[J, S]$ be a connection. The connection Γ comes from a energy function if and only if

1) there is an energy function E_{0} such that $d_{R} E_{0}=0$.
2) the scalar 1-form $d_{v} E_{0}$ is completely integrable.

Then, there exists a constant $\varphi(x)$ on the bundle such that $e^{\varphi(x)} E_{0}$ is the energy function of Γ.
Proof. This is a consequence of the propositions 2.12 .3 and the proof of theorem 1 of [1].

3 Riemannian manifold

In this paragraph, we assure that the energy function E is of class \mathcal{C}^{2} on the null section, then the manifold (M, E) becomes Riemannian. With the Cartan connection D, we have [4]

$$
D_{J X} J Y=[J, J Y] X, D_{h X} J Y=[h, J Y] X .
$$

With the linear connection D, we associate a curvature

$$
\begin{equation*}
\mathcal{R}(X, Y) Z=D_{h X} D_{h Y} J Z-D_{h Y} D_{h X} J Z-D_{[h X, h Y]} J Z \tag{3.1}
\end{equation*}
$$

for all $X, Y, Z \in \chi(T M)$. The relationship between the curvature \mathcal{R} and R is

$$
\mathcal{R}(X, Y) Z=J[Z, R(X, Y)]-[J Z, R(X, Y)]+R([J Z, X], Y)+R(X,[J Z, Y]) .
$$

for all $X, Y, Z \in \chi(T M)$.
In particular,

$$
\mathcal{R}(X, Y) S=-R(X, Y) .
$$

As the function E is homogeneous of degree 2 and of class \mathcal{C}^{2} null on null section. On an open set U of $M,\left(x^{i}, y^{j}\right) \in T U$, the energy function is written

$$
E=\frac{1}{2} g_{i j}\left(x^{1}, \ldots, x^{n}\right) y^{i} y^{j},
$$

where $g_{i j}\left(x^{1}, \ldots, x^{n}\right)$ are symmetric positive functions such that the matrix $\left(g_{i j}\left(x^{1}, \ldots, x^{n}\right)\right)$ is invertible. And the relation $i_{S} d d_{J} E=-d E$ gives the spray S

$$
S=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right) \frac{\partial}{\partial y^{i}},
$$

we denote

$$
\gamma_{i k j}=\frac{1}{2}\left(\frac{\partial g_{k j}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right)
$$

and

$$
\gamma_{i j}^{k}=g^{k l} \gamma_{i l j},
$$

we have

$$
G^{k}=\frac{1}{2} y^{i} y^{j} \gamma_{i j}^{k} .
$$

We note $\Gamma_{i}^{j}(x, y)=y^{l} \Gamma_{i l}^{j}(x)$, the horizontal projector is written

$$
\left\{\begin{array}{l}
h\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial x^{i}}-\Gamma_{i}^{j} \frac{\partial}{\partial y^{j}} \\
h\left(\frac{\partial}{\partial y^{j}}\right)=0
\end{array}\right.
$$

The vertical projector becomes

$$
\left\{\begin{array}{l}
v\left(\frac{\partial}{\partial x^{i}}\right)=\Gamma_{i}^{j} \frac{\partial}{\partial y^{j}} \\
v\left(\frac{\partial}{\partial y^{j}}\right)=\frac{\partial}{\partial y^{j}}
\end{array} .\right.
$$

The curvature $R=\frac{1}{2}[h, h]$ is then

$$
R=\frac{1}{2} R_{i j}^{k} d x^{i} \wedge d x^{j} \otimes \frac{\partial}{\partial y^{k}} \text { with } R_{i j}^{k}=\frac{\partial \Gamma_{i}^{k}}{\partial x^{j}}-\frac{\partial \Gamma_{j}^{k}}{\partial x^{i}}+\Gamma_{i}^{l} \frac{\partial \Gamma_{j}^{k}}{\partial y^{l}}-\Gamma_{j}^{l} \frac{\partial \Gamma_{i}^{k}}{\partial y^{l}}, i, j, k, l \in\{1, \ldots, n\} .
$$

Proposition 3.1 ([2]). On a Riemannian manifold (M, E), the horizontal nullity space of the curvature R is generated as a module by the projectable vector fields belonging to this nullity space and, orthogonal to the image space ImR of the curvature R and $h N_{R}=h N_{\mathcal{R}}$.

Proposition 3.2. On a Riemannian manifold (M, E), the horizontal space and the space $\operatorname{Im} R$ of the curvature R generate a Lie algebra on $\mathcal{F}(T M)$ whose the vertical space is orthogonal to $J N_{R}+\langle C\rangle_{\mathcal{F}(T M)}$.

Proof. It is immediate to see that $\operatorname{Im} R$ is orthogonal to $J N_{R}+\langle C\rangle_{\mathcal{F}(T M)}$, from the relations between the curvature R, \mathcal{R} and $h N_{R}$ [1].
Let be $X, Y \in \chi(T M)$, we have

$$
[h X, h Y]=h[h X, h Y]+v[h X, h Y]=h[h X, h Y]+R(X, Y),
$$

ie, $[h X, h Y] \in I m h+I m R$, for all $X, Y \in \chi(T M)$.
Let be $X \in h N_{R}$ and $J Y \perp J N_{R}+\{C\}$. We have $g(J Y, J X)=0$. We can consider X projectable according to the proposition 3.1 since g is bilinear. Given $D g=0$, we can write

$$
D_{h Z} g(J Y, J X)-g\left(D_{h Z} J Y, J X\right)-g\left(J Y, D_{J Z} J X\right)=0 .
$$

From the relation $h^{2}=h$, we get

$$
D_{h Z} J Y=v[h Z, J Y] \text { and } D_{h Z} J X=v[h Z, J X]=[h, J X] h Z=0 \text {, }
$$

according to the proposition 4 [1]. The relation $v[h Z, J Y]$ is orthogonal to $J N_{R}$. Similarly, $v[h Z, J Y]$ is orthogonal to $C=J S$, given $[C, h]=0$. If $J Y, J Z$ are orthogonal to $J N_{R}$, we have $g(J Y, J X)=0, g(J Z, J X)=0$ for all $X \in h N_{R}$.
From the relation $D g=0$, we can write $g\left(D_{h Z} J Y, J X\right)+g\left(J Y, D_{J Z} J X\right)=0$ and $D_{J Z} J Y=$ $[J, J Y] Z=J[J Z, Y]$, taking into account $[J, J]=0$. Likewise, we find $D_{J Z} J X=J[J Z, X]$. We then have $g([J Z, J Y], J X)=g(J[J Z, Y]+J[Z, J Y], J X)=0$. That is, $[J Z, J Y]$ is orthogonal to $J N_{R}$. If $J Y, J Z$ are orthogonal to C, it means $L_{J Y} E=0$ and $L_{J Z} E=0$. We then have $L_{[J Y, J Z]} E=0$. Hence the result.

Remark 3.3. For a Riemannian manifold, condition 2) of the theorem 2.4 could become $H+\operatorname{ImR}$ completely integrable by the proposition 3.2 if $h N_{R}=\{0\}$.
An energy function is written

$$
E_{0}=\frac{1}{2} g_{i j}^{0} y^{i} y^{j}
$$

Thus, the relation $d_{R} E=0$ is equivalent to the following system of equations

$$
\left\{\begin{array}{l}
g_{k l}^{0} R_{l, i j}^{k}=0 \\
g_{k l}^{0} R_{r, i j}^{k}=-g_{k r}^{0} R_{l, i j}^{k} \quad \text { with } l \neq r .
\end{array}\right.
$$

In the matrix form, the system is written

$$
\left(\begin{array}{ccc}
g_{11}^{0} & \ldots & g_{n 1}^{0} \\
\vdots & \ddots & \vdots \\
g_{1 n}^{0} & \ldots & g_{n n}^{0}
\end{array}\right)\left(\begin{array}{ccc}
R_{1, i j}^{1} & \ldots & R_{n, i j}^{1} \\
\vdots & \ddots & \vdots \\
R_{1, i j}^{n} & \ldots & R_{n, i j}^{n}
\end{array}\right)=\left(\begin{array}{cccc}
0 & & & \\
\ddots & -{ }^{t} \mathbf{A} \\
\mathbf{A} & \ddots & \\
& & & 0
\end{array}\right) .
$$

Remark 3.4. In [7], an answer was given. Let M be a paracompact differentiable manifold, and D a linear connection on M, without torsion. For D to come from a Riemannian structure, it is necessary and sufficient that its groups of holonomy are relatively compact.

References

[1] M. Anona and H. Ratovoarimanana, On existence of a Riemannian manifolds at a given connection, J. Generalized Lie Theory Appl. 143 (2020) 1-6.
[2] - On Lie algebras associated with a spray, Commun. Math., nº 2 (2022) 13-23.
[3] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential form, Proc. Kond. Ned. Akad. A. 59 (1956) 338-359.
[4] J. Grifone, Structure presque-tangente et connexions I, Ann. Inst. Fourier Grenoble 22 (1) (1972) 287-334.
[5] J. Klein and A. Voutier, Formes extérieures génératrices de sprays, Ann. Inst. Fourier 18 (1) (1968) 241-260.
[6] H. Rund. The Differential Geometry of Finsler Spaces, Springer, Berlin, (1959).
[7] J. Vey. Sur les connexions riemanniennes, Unpublished manuscript.

