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Abstract 

Resources in a queuing network are often rare and expensive. Sharing them to customers of the network is a hard problem 
and impacts a lot the performances of the system. We present in this paper a new optimal and feasible method to share 
these resources based on the result of the game theory. We use of the theory of bargaining game and repeated stochastic 
game to find an optimal consensus for resources sharing based on customer aspirations. Our model, which we call “myopic 
model”, proposes a system of myopic players who don’t project future payoffs of the game, and which is a rather dynamic 
model depending on the evolution of customer aspirations over the time. Simulations of our hypothesis were performed by 
analyzing performances of our system compared to First-In First-Out queue, standard Processor Sharing model, and one 
using Kalai-Smorodinsky bargaining solution. The results have allowed us to appreciate ours, mostly in an instability 
phenomenon, and to propose a variety of applications, mainly in any system with shared resources, such as distributed 
systems, centralized systems as cloud computing, Search Engine Optimization algorithms, ... 

Index terms : Game theory, Network, Queue, Resource, Sharing  

I. Introduction 

A processor sharing queue is a particular one where the word queue is a misnomer. All existing customers ahead the servers 
are immediately served with a part of its available resource. Each of them leaves the queue to move to another one after 
receiving service he has requested from server, whence concept of queuing network comes. 

Contribution we provide in this paper is how to share server resources between those customers. Our method is based on 
the game theory, especially a model of myopic players which optimize only their current gain. 

II. Model of customers and queuing network 
A. Principle 

On a given queue, customers arrive and others leave. Each customer needs a total of resource 𝑏  to fulfill his requirement 
that he asked to server. In the following, we put that these resources are sampled and shareable in order to work in the 
discrete domain. At the beginning of each time interval 𝑡, each player 𝑖 sends his strategy 𝑠  for the bargaining of the 
resource 𝐶 of the server. We restrict to a finite countable strategies set 𝑆  . The server will evaluate these proposals to compute 
the resources 𝑐  that he will assign to the players. Each resource 𝑐  has a price 𝑝  that the server sends with the resource to 
the player. Once received, each resource will be used by each player and they will calculate their gains. They also assess 
the remains of their respective requirement function of the consumed resources. We precise that the player requirement at 
the beginning of time 𝑡 was assessed at the end of time 𝑡 1 after using the resource 𝑐  allocated at this time.  

As we consider the mobility of the players, each of them will decide from his requirement whether he will stay in his current 
queue, or move to the next queue. Initially, when the customer 𝑖 arrives in a queue, the first requirement is noted 𝑏 . Over 
time, depending on the allocated resources, that requirement becomes 𝑏  as : 

𝑏 𝑏 𝑐   (1) 

The decision of the customer is determined by (12). 

𝑑𝑒𝑐 𝑏
𝑠𝑡𝑎𝑦     𝑖𝑓 𝑏 0
𝑚𝑜𝑣𝑒   𝑖𝑓 𝑏 0

  (2) 

This principle is illustrated on figure 1. 

B. The game formulation 

Let’s model these actions and movements by a stochastic game. This is a stochastic game between 𝑁   players. The number 
of players 𝑁  varies over time as players arrive to or depart from the queue according to their requirements. At time 𝑡, for 
player 𝑖, the local state of the game is defined by the requirement 𝑏 . By its finite cardinal, let’s note 𝐵  the set of possible 
requirements of player 𝑖. For player 𝑖, let’s put 𝑠  the strategy that he proposes to the server. The set of 
possible proposals, noted 𝑆 𝑠 , is also the set of possible strategies for that player.  

Let 𝑔 ∶ 𝐵 𝑆 … 𝑆 → ℝ be a function gain for the player, function of the local state 𝑏  and the joint strategies 𝑠

𝑠 , … , 𝑠 . We evaluate this gain from the allocated resources, which are themseleves based on price proposals 𝑠  done 
by all players. 

The transition model between local states is defined by the function 𝑇 ∶ 𝐵 𝑆 … 𝑆 𝐵 → 0,1  (3) : 
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𝑇 𝑏 , 𝑠 , 𝑏
∈

1 (3) 

Since the requirements (local states) 𝑏  and 𝑏  are dependent, and are also function of the joint strategy 𝑠  , we can say 
that this function can be well defined. We will further evaluate this transition function. From these data, it is possible to model 
the actions and movements of the players with a stochastic game defined by the quintuplet 𝑁 , 𝐵 , 𝑆 , 𝑔 , 𝑇 . 

 

Figure 1. Games at time 𝑡 

C. Bargaining of the resource of the server 

Given a resource 𝐶 of the server, it will be bargained through the customers of the queue, here called as players. At time 𝑡, 
each player must maximize his gain on the possible proposals set 𝑃  as shown on (4). 

𝑔 𝑝 , 𝜇 𝑢
𝑝
𝜇

𝑝  (4) 

On (4), the function 𝑢 𝑐  is the utility function of player 𝑖 regarding the resource 𝑐  that the server has allocated after the 
bargaining computation. This function must be concave as described on paragraph II. And to better assess the allocated 
resource, it is necessary that this utility function 𝑢  is also function of the requirement 𝑏 . We can use, for example, a 
logarithmic or quadratic valuation given in (5) and (6). 

𝑢 𝑐 , 𝑏 𝐴
log 𝑐
log 𝑏  

,           𝑢 𝑐 , 𝑏 𝐴 𝐵
𝑐
𝑏

 (5), (6) 

where 𝐴 and 𝐵 are arbitrary positive constants. The proof of the concavity of these functions comes from the negativity of 
their second derivatives.  

Players send to server their proposals 𝑝 𝑝 , … , 𝑝 ∈ ℝ . Once received by the server, it computes the resource to 
allocate 𝑐 𝑐 , … , 𝑐 . On (4), the price 𝜇  is not yet known beforehand, so the players are not able to compute the optimal 
proposal 𝑝 . The function gain that he must maximize is defined by (7) assuming that ∑ 𝑝  is constant. 

𝑔 𝑝 𝑢
𝑝

∑ 𝑝
𝐶 𝑝  (7) 

By cancelling the derivative with respect to 𝑝  : 

𝑔 𝑢
𝑝

∑ 𝑝
𝐶 . 1

𝑝
∑ 𝑝

. 𝐶 1 0 (8) 

Let’s note 𝑑
∑

𝐶. So, we have : 



102 

𝑢 𝑑 . 1
𝑑
𝐶

1
𝐶

 (9) 

Let’s call 𝑑  the strategy of player 𝑖, that he sends to server at time 𝑡. This strategy will be assessed from (9) independently of 

the other players. So, once the joint strategy 𝑠 𝑑 , … , 𝑑  is received by the server, it computes the bargaining. As 𝑑  

, the price 𝑝  to perform this computation can be derived (by the server) from the strategy 𝑑  sent by the player 𝑖 with some 
factor 𝜇  (the elementary price of resource) that he enforces. 

D. Study of stochastic game of player 𝒊 
1. Model of state transition 

Player 𝑖 plays a stochastic game defined by a quintuplet 𝑁 , 𝐵 , 𝑆 , 𝑔 , 𝑇 . To model the dynamism of player 𝑖 at time 
𝑡, we defined his local state as his requirement 𝑏 . The state change process is very clear after using the resource 𝑐  allocated 
by the server. The transition from the state 𝑏  to another state 𝑏  means that the allocated resource at time 𝑡 is equal to 
𝑏 𝑏  : 

𝑏 𝑏 𝑐   (10) 

The probability of transition from the state 𝑏  to another state 𝑏  can be assessed as the probability that the allocated 
resource at time 𝑡 is 𝑏 𝑏 𝑐  . The model 𝑇 ∶ 𝐵 𝑆 … 𝑆 𝐵 → 0,1  of the state transition is expressed by (11). 

𝑇 𝑏 , 𝑠 , 𝑏 1   𝑖𝑓 𝑏 𝑏 𝐶
𝑑

∑ 𝑑
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

  (11) 

Where joint strategy of all players is 𝑠 𝑑 , … , 𝑑 , and  𝐶
∑

 means the allocated resource to player 𝑖 at time 𝑡. The gain 

owned by that player at this time is expressed by (12). 

𝑔 𝑑 𝑢 𝑑 𝜇 𝑑   (12) 

2. Impact of game history and its future 

As we are faced to a repeated game, players can use history of the game to bargain the resource of the server. Let ℎ
𝑏 , 𝑑 , 𝜇 , … , 𝑏 , 𝑑 , 𝜇 , 𝑏 ∈ 𝐻  where 𝑏  indicates the requirements at time 𝑡, 𝑑  the proposals sent to the server at this 

time, 𝜇  the elementary price enforced by the server, and 𝐻  the set of possible history for this game. The game history that 
the player 𝑖 can observe is called observation of player 𝑖 that we denote 𝑜  . This observation is limited because the player 
𝑖 is not able to observe some part of the history of his requirements, his proposals, and the elementary price sent by the 
server due to lack of memory. So, we have 𝑜 ⊂ ℎ . It is also required that player can observe his current state 𝑏 ∶ 𝑏 ∈ 𝑜 . 
Let’s denote 𝑂  the set of possible 

observations up the time 𝑡 for player 𝑖. Considering these observations, the player 𝑖 can adjust his way of calculating his 
proposal at time 𝑡. Let’s call it as policy of player 𝑖 at time 𝑡, denoted 𝜋 .differs from a simple strategy 𝑑  by using the 
observations up the time 𝑡. 

𝜋 ∶ 𝑂 → 𝐴                                

𝑜 ⟼ 𝑎 𝜋 𝑜   
(13) 

In (13), 𝐴  indicates the set of possible proposals. Equation (13) mentions that policies 𝜋  are function of observation of player 
𝑖 at time 𝑡. So, the player 𝑖 has to determine a policy which can ensure a best response. The better is to find a time-
independent one that we call a stationary policy 𝜋 , so as to be usable at any time by simply basing to observations. We 
can get it because the current requirement 𝑏  depends only on the previous one 𝑏  and the allocated resource at this 
time that is function of the proposal 𝑑  as given by (11). In that case, the policy is markovian. 

Let 𝜋 𝜋 , 𝜋  be the joint stationary policy. The gain 𝑔 𝑏 , 𝑑  owned by the player 𝑖 at step 𝑘 is discounted by a factor 
𝛿  at time 𝑡, and the total gain owned by this player at time 𝑡 with the policy 𝜋 is denoted as 𝐺 𝑏 , 𝜋 . This gain is expressed 
by the recurrent relation (14). 

𝐺 𝑏 , 𝜋 𝑔 𝑏 , 𝑑 𝛿 𝑇 𝑏 𝑏 . 𝐺 𝑏 , 𝜋
∈

  (14) 

The policy 𝜋∗ which ensures the best response for player 𝑖 is given by (25). 

𝜋∗ 𝜋 Argmax 𝐺 𝑏 , 𝜋 , 𝜋    (15) 

The problem is how player 𝑖 can find this optimal policy 𝜋∗. 
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Equation (15) shows that the policy of player 𝑖 ensuring the best response depends on other players policies, that is a function 
of other players states. Player 𝑖 doesn’t know other players states, so he doesn’t able to compute his optimal policy. 
However, he can optimize only his immediate gain 𝑔 𝑏 , 𝑑 . The expected gain is therefore discounted by a factor 𝛿 0 . 
In that case, the proposal strategy 𝑑  coincides with the optimal policy 𝜋∗. Let’s call myopic policy this 

policy which doesn’t consider or ignore the impact of the future. The optimal policy is denoted 𝜋 , which is a time 
independent function of a single variable, and depends only on the current state of player 𝑖. 

3. Performances of the model 

We can use two different measures to evaluate the performance of our model: the total gain (with discount) that each 
player must maximize, and the sojourn time that each player must minimize. The total gain owned at time t is given by (16). 

𝐺 𝑏 , 𝜋 𝑔 𝑏 , 𝑑    (16) 

Where the proposal 𝑑  and the function 𝜋 𝑏  coincide. 
If player 𝑖 arrives to the queue at time 𝑡  , the gain owned at a time 𝑡 (𝑡 𝑡 ) is discounted by a factor 𝛿  during the 
calculation of the total gain. The player 𝑖 will move from this queue at time 𝑡  as (17). 

𝑡 min 𝑏 0, 𝑡 𝑡    (17) 

The sojourn time for player 𝑖 is expected by (18). 
𝑡 𝑡 𝑡    (18) 

The total gain for player 𝑖 is expressed by (19). 

𝐺 𝛿 𝐺 𝑏 , 𝜋 𝛿 𝑔 𝑏 , 𝜋 𝛿 𝑢 𝜋 𝜇 𝜋    (19) 

We can also use the expected total gain to penalize the player in term of time, by making him able to own more gain if he 
doesn’t stay longer on the queue. The expected total gain is expressed by (20). 

𝐺
𝐺

𝑡 𝑡

∑ 𝛿 𝑢 𝜋 𝜇 𝜋

𝑡 𝑡
   (20) 

III. Simulation evaluation and analysis 

To evaluate our model, we tried to implement our model on queuing networks who convey packets simulated on OPNET 
Modeler software. We compared the established model to other models to know his performance. 

As described in Figure 2, simulations consist of FIFO (First in First Out) queue, Classic PS (Processor Sharing) queue, Processor 
sharing queue using the KSBS (Kalai-Smorodinsky Bargaining Solution) and Our myopic players model. 

“Source” sends same packets to “Dest MYOP”, “Dest KSBS”, “Dest FIFO” and “Dest PS” through the queues. The links between 
these entities feel no packet propagation delay or propagation error. 

Simulations are based on the following parameters: 
- The inter-arrival of packets 𝑇 (time between successive generations of packet at “Source”) has an exponential 

distribution parameter 𝜆 1 second 
- The 𝜇 packet sizes generated by “Source” as an exponential distribution with parameter 1024 bits. 
- The processing capacity 𝐶 of the server of each queue is fixed. This capacity, expressed in bits per second (bps), is 

identical for all four queues of the system. 

 

Figure 2. Simulation description 
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A. Stable system 

Let’s consider a stable system, where the capacity of server is greater than the load rate of the queue. We used 𝐶 1100 
bps for the simulation. During 10 minutes of simulation, we get the results below. 

We find on Figure 3 similar properties of the PS queue and our MYOPIC queue. FIFO queue and the egalitarian solution have 
more packets queuing compared to PS and MYOPIC. 

As in Figure 4, the average sojourn time is almost identical for PS queue and MYOPIC queue. There is a stable difference 
around 0.7 second between them, where the sojourn time for PS queue is greater than the one for MYOPIC queue. 

In Figure 5, the system provides identical throughput. The number of packets per second which come out of each queue is 
almost the same after a long time of simulation. 

 

Figure 3. Evolution of the average number of packets on each queue on a stable system 

 

Figure 4. Evolution of the average sojourn time on each queue on a stable system 

 

Figure 5. Evolution of the throughput from each queue on a stable system 
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B. Unstable system 

Now, let’s consider an unstable system, where the capacity of the server is lower than the load rate of the queue. For that, 
we used 𝐶 900 bps. In Figure 6, at the 10th minute, we already find that the system is unstable; the number of packets on 
each queue is increasing but the lowest is shown by the MYOPIC queue. Contrary to a stable system, the difference between 
PS queue and MYOPIC queue performance is highlighted, the two curves diverge. 

Till the 10th minute, we can read on Figure 6 that in average: 

- 33.45 packets are found processed on the MYOPIC queue, 
- 35.12 packets are found processed on the PS queue, 
- 36.71 packets are found queuing on the FIFO queue, 
- 41.64 packets are found queuing on the KSBS queue. 

In term of average sojourn time, sojourn on a MYOPIC queue is lowest compared to the other scheduling method. We can 
interpret it as a low latency in practice. 

 

Figure 6. Evolution of the average number of packets on each queue on an unstable system 

 

Figure 7. Evolution of the average sojourn time on each queue on an unstable system 

Node name Total 
Dest FIFO 495 
Dest KSBS 488 
Dest MYOPIC 501 
Dest PS 496 
Source 507 

Table 1. Number of packets at each destination at the end 

Table 1 shows the number of packets received by each destination after the 10 minutes of simulation. It puts evidence the 
difference of the average throughput as in Figure 8. 

Let’s precise that the Source sends the same number of packets at the same time with a same distribution, but this big 
difference is due to the scheduling and processing on each queue. 
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We can say that our MYOPIC system can better manage the packets in case of instability compared to the classic PS 
queue (e.g: in case of temporary congestion). 

 

Figure 8. Evolution of the average throughput from each queue on an unstable system 

IV. Conclusion 

Our contribution consists of a new way to manage the resource of queue. Our methodology is based on a repeated 
stochastic bargaining game to share the resources of a queuing network. We introduced a new principle of a myopic 
player who doesn’t optimize his future gain by the history of the game. The simulation shows the performance of our model 
which has a better scheduling during an instability period. 
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